

Fundamentals of microfabrication

- Design and simulation
- Microfabrication
- Characterization

Biological techniques & analysis

- Microscopy
- Cellular biology
- Molecular biology

Device integation & applications

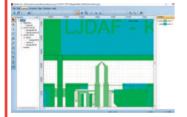
- Microfluidics
- Organ-on-a-chip
- Single cell characterization

Link to translational medicine

- Clinical cancer management
- Techniques of tissue sampling
- Pathological sample processing

Additionally...

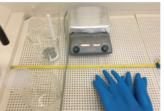
- Group projects
- Social events



What is SMMiL-E / UTC School?

SMMiL-E / UTC School aims at an introductory educational program for students new to BioMEMS. Sessions introduce each step from the initial device design to applications. A day at Centre Oscar Lambret, the regional reference hospital specialized in cancer, allows observing some cancer therapies to build a link between technology and translational medicine. Students, from Japan and France, have the opportunity to spend time with high-level researchers during lectures, experiments, and projects sessions. In addition to the BioMEMS-related classes, students also work on projects both in Lille and Compiègne. Major concepts related to BioMEMS will, first be covered at SMMiL-E. Then, a deeper view of organ-on-a-chip systems will be featured at UTC as proposed by the international chair with UTokyo "DOT- Disruptive Organoid Technology".

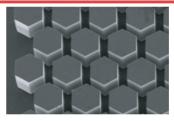
Students learn...

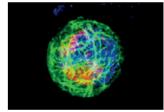

Fundamentals of microfabrication

Design & simulation (CAD, COMSOL)

Microfabrication (Metal patterning, Mold for PDMS microfluidics)

Rapid prototyping (3D printing, CNC, 2PP)

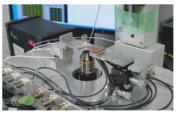

Biological techniques and analysis


Cellular bio. fundamentals (Cell culturing)

Mol. biology fundamentals (Western blotting, PCR)

Imaging techniques:

Electron & optical microscopy (BF, FI, PC, DIC and confocal)


Device integation and applications

Microfluidics (Laminar flow, flow charact.)

Organ-on-a-chip (3D cell culture)

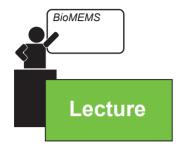
Cell characterization (Imp. spec. & mech. charact.)

Predictive Toxicology

Link to translational medicine

Cancer therapies

Group projects



BioMEMS projects (Handled by students)

(Surgery, chemotherapy and radiation therapy)

Class content

SMMiL-E / UTC School consists of three types of classes. Each day starts with a lecture on the topic of the day. The lectures are supported with observation sessions where students can observe researchers performing experiments on given topics. The last type of class permits students to handle sample projects as a part of BioMEMS projects.

I. Device & setup development

- 1. Microfabrication
 - a) Fundamental techniques (e.g. lithography, deposit., etching) b) Rapid prototyping tools
 - Nanoscribe, 3D printer, CNC
- 2. Observation & characterization
 - a) Microscopy (optical & electron) b) Profilometer & probe station
- 3. Operating BioMEMS systems

III. Applied systems

- 1. Vessel-on-a-chip
 - Mimicking blood vessels
- 2. Biophysical cell charact.
 - a) Single cell analysis
 - b) Handling BioMEMS systems

II. Fundamental techniques

- 1. Cellular biology
 - a) Cell culturing
 - b) Flow cvtometry
 - c) Plasmid transfection
- 2. Molecular biology
 - a) PCR
 - b) Nucleic acid extraction
 - c) Gene expression
 - d) rtPCR
 - e) Western blotting
- 3. Microfluidic systems
 - a) PDMS molding
 - b) Laminar flow microfluidics
- 4. Cancer therapies
 - a) Imaging
 - b) Pathology
 - c) Chemotherapy
 - d) Radiotherapy

IV. Special feature: Organ-on-a-chip systems

- 1. Application
 - a) Toxicology studies
 - b) Regulatory issues
 - c) Predictive toxicology
- 2. Device overview
 - a) Flow characterization b) Cell seeding
 - c) Perfusion devices

Facilities

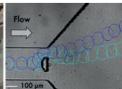
Microfabrication and imaging

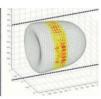
Lithography

- Deposition
- Etchina
- Characterization
- · Rapid prototyping
- · FE-SEM
- · Airyscan confocal microscopy
- · Inverted and upright microscopes

Molecular and cellular biology

- Cell culturing
- Bioprinter
- Culture under perfusion
- Abs/Lum/Fluo/ Alphascr. plate reader
- · Classic & real-time PCR
- DNA/RNA & protein quantification & analyses
- Nucleic acids & protein gel imaging systems





- · Organoid formation
- Cell encapsulation
- Bioreactors
- Micro/nano indentation
- · Dynamic cell culture
- Perfusion systems
- Time lapse microscopy
- Immunocytochemistry

Microfluidics

- · High speed camera
- Micro Particle Imaging Velocimetry
- Pressure controllers
- Flow and image analysis
- Viscosimetry
- Fluid Structure Interactions Simulations

Timetable

2025

2025								
9:00	17 / Feb Tue	18 / Feb Tue	19 / Feb Wed	20 / Feb Thr	21 / Feb Fri			
9.00	Introduction to Organ-on-chip	Organoid and OoC Application to liver	Organ-on-chip for toxicology studies	Mathematical model, system biology & predictive toxicology	Regulatory issues with organ-on-chips			
10:15	C. Legallais	C. Legallais	E. Leclerc	M. Nishikawa	J-M. Prot C. Legallais			
-								
10:30 -	How to manufacture a biochip @ BMBI	Microfluidics and cell behavior - Postprocessing-	Organ-on-chip for toxicology studies	Sensors for biochips	Training opport @LIMMS S.H. Kim			
12:00 –	JR. Jellali	A. Le Goff	Y. Sakai	T. Minami	Mini project			
	Lunch	Lunch	Lunch	Lunch	Lunch			
14:00 –	Biochip design	Biochip microfabrication	Cell seeding in different biochips	Flow and pressure characterization in microfluidic devices	Mini project			
	5.115	4.1.4						
	Mini project	Mini project	Mini Mini project project		Project			
	A. Le Goff			A. Le Goff	presentation			
18:00 –	R. Jellali	R. Jellali	R. Jellali	Compiègne tour				
10.00				and Dinner	Get together party			

Professors

Compiègne

Lille

R. Jellali (UTC) Biomaterials

T. Minami (LIMMS, UTokyo) Biosensors

L. Ceugnart (COL) Clinical Medicine

A. L. Gagez (COL) Clinical Medicine

A. Le Goff (UTC) Physics of fluids

M. Nishikawa (UTokyo) Bio simulation

M. P. Chauvet (COL) Clinical Medicine

J.-C. Gerbedoen (LIMMS) Microfabrication

E. Leclerc (LIMMS, UTC) Organ-on-chip, omics

J. M. Prot (UTC) Regulat. affairs, Biomedical eng.

D. Collard (LIMMS) MEMS

K. Hannebicque (COL) Clinical Medicine

C. Legallais (UTC) Tissue engineering

Y. Sakai (LIMMS, UTokyo) Biochemical syst. engineering

F. Feutry (COL) Clinical Medicine

M. Jafari (COL) Clinical Medicine

					2025
24 / Feb Mon	25 / Feb Tue	26 / Feb Wed	27 / Feb Thr	28 / Feb Fri	- 8:30
Opening remarks Introduction to BioMEMS	Fundamentals of Micromachining	Cancer Therapy	Fundamentals of Cellular Biology	Single cell biophysical characterization	- 6.30
D. Collard S.H. Kim M.C. Tarhan	M. Kumemura M. C. Tarhan	E. Lartigau S. Meignan	F. Soncin	D. Collard	- 10:1 5
					- 10:15 - 10:30
Group meeting for project management	Fundamentals of Microfluidic Systems	Cancer Therapies: Biopath, Surgery, Transl. research Clinical research	Fundamentals of Molecular Biology	Organ-on-a-chip Systems	10.30
management	S.H. Kim	Y. Robin, L. Ceugnart, X. Mirabel, N. Penel, M.P. Chauvet	F. Soncin	A. Treizebre	– 12:30
Lunch	Lunch	Lunch	Lunch	Lunch	
Organoid platform visit	Fabrication tech. J.C. Gerbedoen	Cancer Therapies: Imaging,	Confocal microsc. C. Lagadec	Cell culturing/PCR F. Soncin	– 13:30
	Rapid prototyping F.A. Shaik	Radiotherapy, Chemotherapy	Elect/optic microsc. M.C. Tarhan	Western blotting S. Meignan	– 14:30
A. Vincent		A.L. Gagez, M. Jafari, F. Feutry			
	Project work		Project work	Group presentation	
Project work		Project work			47.00
	Group meeting		Group meeting	Closing remarks Kim/Tarhan	- 17:00 - 17:30

Professors Lille

S.H. Kim (IIS) Microfluidics

M. Kumemura (Kyutech, IIS) Microfluidics

C. Lagadec (CANTHER) Cellular biol.

E. Lartigau (COL) Clinical Medicine

G. Marliot (COL) Clinical Medicine

Y. Matsunaga Organ-on-chip

S. Meignan (COL) Molecular biology

X. Mirabel (COL) Clinical Medicine

Medicine Y. M. Robin (COL) Clinical

N. Penel

(COL)

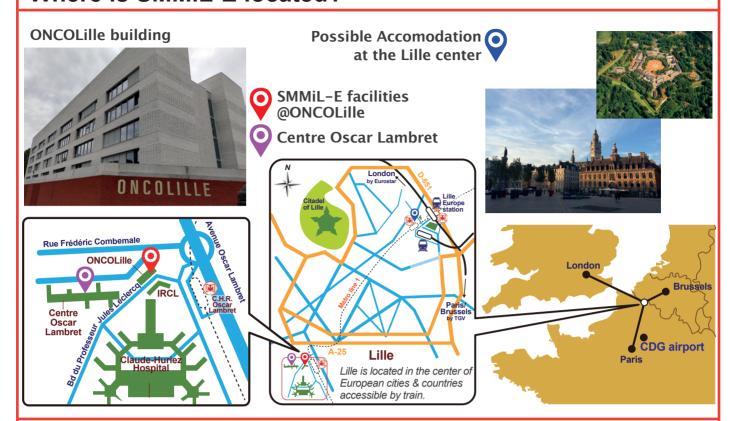
Clinical

F. A. Shaik (IEMN) Design & sim.

M. Shinohara (IIS) Organ-on-chip Biology

F. Soncin (LIMMS) Molecular biol. Cellular biol.

M. C. Tarhan (IEMN, Junia) **MEMS**



A. Trezeibre (IEMN) Microfluidics

A. Vincent (CANTHER) Organoids

Where is SMMiL-E located?

Université de Lille

Where is UTC located?

