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A Saccharide Chemosensor Array
Developed Based on an Indicator
Displacement Assay Using a
Combination of Commercially
Available Reagents
Yui Sasaki, Zhoujie Zhang and Tsuyoshi Minami*

Institute of Industrial Science, University of Tokyo, Tokyo, Japan

Herein, a very simple colorimetric chemosensor array is reported for saccharides

(D-glucose, D-fructose, D-xylose, D-galactose, D-mannose, L-rhamnose, and

N-acetyl-D-gluosamine). While various types of chemosensors for saccharides have

been investigated extensively to-this-date, tremendous additional efforts are still required

on a regular basis for the syntheses of new chemosensors. Complicated syntheses

would be a bottleneck, given that artificial receptor-based chemosensing systems are not

so popular in comparison to biomaterial-based (e.g., enzyme-based) sensing systems.

Toward this end, chemosensor array systems using molecular self-assembled materials

can avoid the abovementioned synthetic efforts and achieve simultaneous qualitative

and quantitative detection of a number of guest saccharides. Using a practical approach,

we focus on an indicator displacement assay (IDA) to fabricate a chemosensor array

for colorimetric saccharide sensing. On this basis, 3-nitrophenylboronic acid (3-NPBA)

spontaneously reacts with catechol dyes such as alizarin red S (ARS), bromopyrogallol

red (BPR), pyrogallol red (PR), and pyrocatechol violet (PV), and yields boronate ester

derivatives with color changes. The addition of saccharides into the aqueous solution

of the boronate esters induces color recovery owing to the higher binding affinity of

3-NPBA for saccharides, thus resulting in the release of dyes. By employing this system,

we have succeeded in discriminating saccharides qualitatively and quantitatively with a

classification success rate of 100%. Most importantly, our chemosensor array has been

fabricated by only mixing low cost commercially available reagents in situ, which means

that complicated synthetic processes are avoided for saccharide sensing. We believe

this simple colorimetric assay that uses only commercially available reagents can create

new, user-friendly supramolecular sensing pathways for saccharides.

Keywords: saccharide, chemosensor array, phenylboronic acid, indicator displacement assay, colorimetric

sensing, regression analysis

INTRODUCTION

To-this-date, the analysis of monosaccharides has been proven particularly important in the field of
food chemistry because the monitoring of foodstuff quality and the investigation of illegal additions
of saccharides into fruit juices or honey are highly required (Tůma et al., 2011). Monosaccharides,
such as D-(+)-glucose (Glc), D-(–)-fructose (Fru), D-(+)-xylose (Xyl), D-(+)-galactose (Gal),
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D-(+)-mannose (Man), L-(+)-rhamnose (Rha) and N-acetyl-

D-(+)-glucosamine (NAcGlc) are generally contained in
food or beverages (Martínez Montero et al., 2004), and are
conventionally analyzed using instrumental methods (e.g.,
high-performance liquid chromatography (HPLC) (Schmid
et al., 2016) and/or mass spectrometry (MS) (Žídková and
Chmelík, 2001) owing to their increased accuracy and reliability.
Unfortunately, these methods are associated with increased-costs
that incur owing to the use of expensive equipment, relatively
complicated procedures, and the necessity of trained personnel.
In the efforts to simplify the detection of saccharides, optical
chemosensors have been researched extensively (Sun and
James, 2015; You et al., 2015). Chemosensors exhibit color
and/or fluorescence changes by capturing guest molecules.
Accordingly, we can easily recognize the evoked results by
simple visual inspection. However, conventional methods used
to develop a single chemosensor require a complicated multi
step synthesis process (Liu et al., 2015). The latter would prevent
the increase of the popularity of the chemosensors in the field
of analytical science and industry. In this regard, a molecular
self-assembly (Bull et al., 2013) inspired by nature is utilized
to prepare saccharide chemsensors in situ (Miyaji and Sessler,
2001; Strongin et al., 2001; Sasaki et al., 2017). Herein, we only
used a combination of commercially available and inexpensive
reagents for the preparation of saccharide chemosensors. This
means that 3-nitrophenylboronic acid (3-NPBA) (Hall, 2011)
is employed as the saccharide receptor and a catechol dye,
such as alizarin red S (ARS), bromopyrogallol red (BPR),
pyrogallol red (PR), and pyrocatechol violet (PV), is used as
the indicator (Minami et al., 2016) (Figure 1). First, mixing the
3-NPBA and catechol dyes yields boronate esters accompanied
by color changes (Springsteen and Wang, 2001; Kubo et al.,
2005). Subsequently, a color recovery can be observed by
the addition of saccharides because of the dissociation of
boronate esters between 3-NPBA and dyes (Ma et al., 2009).
This indicator displacement assay (IDA) (Nguyen and Anslyn,
2006), that is used as a sensor array, provides a finger print-like
response to saccharides and leads to excellent discrimination
results (Maximilian Bojanowski et al., 2017). These results
indicate that the smart and appropriate combination of
general reagents minimizes synthetic efforts in laboratories,
thereby allowing a simplified and easy preparation of
supramolecular chemosensors.

MATERIALS AND METHODS

Materials
ARS, Fru, Glc, Xyl, and NAcGlc, were purchased from
FUJIFILM Wako Pure Chemical Corporation (Osaka,
Japan). Additionally, 3-NPBA, BPR, PR, PV, Gal, Man, and
Rha, were purchased from the Tokyo Chemical Industry
Co. Ltd. (Tokyo, Japan). Disodium hydrogenphosphate
dodecahydrate and sodium dihydrogenephosphate
dihydtare were purchased from the Kanto Chemical
Co. Inc. (Tokyo, Japan). Diluted solutions used for all
photophysical experiments were prepared using Mill-Q
water (18.4 MΩ).

Measurements
UV-vis spectra were measured by a Shimadzu UV-2600
spectrophotometer. UV-vis spectra were recorded within the
wavelength range from 350 to 800 nm. Scans were acquired
under ambient conditions at 25◦C. Saccharide titrations were
conducted in a phosphate buffer solution (100mM) with
a pH of 7.4 at 25◦C. Titration isotherms were obtained
from the changes in the absorption maximum at 455 nm
for ARS, 540 nm for BPR, 535 nm for PR, and at 497 nm
for PV, respectively. Titration curves, obtained by plotting
the change in absorption, were analyzed using non-linear
least-squares methods and the equations for the one to
one binding model and the IDA model (Hargrove et al.,
2010). Equations 1 and 2 were used to fit the UV-vis
measurement results,

[H]t = [H]+ KG [H]
1+ KG [H] [G]t +

KI [H]
1+ KI [H] [I]t (1)

A =
[I]t

1+ KI [H]

(

εI b + εHI b KI [H]
)

(2)

where [G]t, [H]t, [I]t, are the total concentrations of saccharides
(as the guests), 3-NPBA (as the host), and for the catechol
dyes (as the indicators), respectively. Moreover, KI and KG

are the binding constants of the indicator to the host
and the guest to the host, respectively. Furthermore, [H]
donates the unknown concentration of the host. The [H]
value could be determined using KI and KG, and with the
use of the experimentally obtained values [G]t, [H]t, and
[I]t. Additionally, εI and εHI are the molar absorptivities
of the indicator and the complex of the host and the
indicator, respectively. Equivalently, A and b are the saccharide
concentration-dependent absorbance and the thickness of the
cuvette, respectively.

The array experiment for qualitative and quantitative
analyses was performed in 384-well microplates. The fluids
[phosphate buffer (100mM) at pH 7.4, ARS, BPR, PR and
PV (40µM), 3-NPBA (6mM), and the analyte solutions
(100mM)], were eliminated with a contact-free dispenser as
follows. Each experiment was carried out in 24 repetitions.
Each well received 90 µL of the buffer solution which
contained the catechol dyes and 3-NPBA. Subsequently, 10
µL of analyte solutions or water were dispensed. After this
period, the plate was shaken for 3min. UV-vis spectra were
measured by a Biotek SYNERGY H1 microplate reader.
The UV-vis spectra were recorded from 400 to 620 nm.
The resulting absorption data were applied to the Student’s
t-test to exclude four outlier data points (from the total
of 24 repetitions) (Minami et al., 2012). The coefficient
of variability of the data was lower than 6%. In the case
of qualitative analyses, the obtained data was analyzed
using linear discriminant analyses (LDA) (Anzenbacher
et al., 2010) without any further pretreatment. The semi
quantitative analyses were conducted using LDA after an
analysis-of-variance (ANOVA) test. A support vector machine
with a principal component analysis preprocessing (PCs
= 3) was used for the quantitative assay of the Glc and
Fru mixtures.
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FIGURE 1 | (A) Chemical structures of ARS, BPR, PR, PV, and 3-NPBA. (B) List of target saccharides. (C) Illustrated scheme of the indicator displacement assay

utilizing the building blocks (i.e., a catechol dye and 3-NPBA) for the easy preparation of colorimetric sensing.

FIGURE 2 | UV-vis spectra of the catechol dye (40µM) upon the addition of 3-NPBA in a phosphate buffer solution (100mM) at a pH of 7.4 at 25◦C for (A) ARS, (B)

BPR, (C) PR, and (D) PV.

RESULTS AND DISCUSSION

First, the complexation of catechol dyes and 3-NPBA in a

phosphate buffer (100mM) at pH 7.4 at 25◦C was investigated

using UV-vis titration experiments. As shown in Figure 2, the

absorption spectra of the catechol dyes were shifted as a function

of increasing the concentration of 3-NPBA. For example, a
significant blue shift (1λ = 46 nm) was observed in the case
of ARS. These responses indicate the formation of the dynamic
covalent bond (i.e., boronate esterification), which is identified
by fast-atom-bombardment (FAB) mass spectrometry (see the
Supplementary Material). The associated constants (KIs) of
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FIGURE 3 | UV-vis spectra of the catechol dye (40µM)-3-NPBA (6mM) complex upon the addition of Fru in a phosphate buffer solution (100mM) at a pH of 7.4 and

at 25◦C for (A) ARS-3-NPBA, (B) BPR-3-NPBA, (C) PR-3-NPBA, and (D) PV-3-NPBA.

FIGURE 4 | Colorimetric finger print-like response patterns obtained from changes in each absorption wavelength of the catechol dye (40µM)-3-NPBA (6mM)

complex upon the addition of saccharides (100mM). (A) ARS-3-NPBA, (B) BPR-3-NPBA, (C) PR-3-NPBA, and (D) PV-3-NPBA.

these complexes were estimated to be 2.1 × 103 M−1 for ARS,
4.8 × 102 M−1 for BPR, 6.7 × 102 M−1 for PR, and 4.6 × 103

M−1 for PV.

Subsequently, we attempted to detect seven types of
monosaccharides (Fru, Glc, Xyl, Gal, Man, Rha, and NAcGlc)
which are generally contained in food or beverages. Figure 3
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FIGURE 5 | LDA plot for the response of the colorimetric chemosensor array

showing the seven types of saccharides (and control) in a phosphate buffer

solution at a pH of 7.4 at 25◦C. [Saccharide] = 100mM. Twenty repetitions

were measured for each analyte. The cross-validation routine shows a

classification success rate of 100%.

shows the UV-vis titration results of Fru as example. The spectral
shift by the incremental Fru concentration was observed to be
accompanied by the recovery of the color. The observed recovery
suggests that the complexation of 3-NPBA and saccharide
occurred on the basis of IDA. Importantly, colorimetric finger
print-like responses were obtained by changing the combination
of catechol dyes and saccharides (Figure 4). The binding
constants between 3-NPBA and saccharides in the presence of
catechol dyes are summarized in Table 1. The calculate KGs
were comparable to previously reported colorimetric saccharide
chemosensors based on PBAs (Koumoto and Shinkai, 2000;
Springsteen and Wang, 2002). From the standpoint of the
pattern recognition algorithm, the cross-reactive selectivity is
very useful in discriminating various analytes with a high
classification accuracy.

Because the finger print-like response encouraged us to
fabricate the chemosensor array, we decided to attempt a
high-throughput saccharide sensing test. Among the pattern
recognition algorithms, we employed LDA as one of the available
supervised methods to a) reduce the dimensionality and b)
classify the multivariate data. To discriminate analyte patterns,
a mathematical model is firstly constructed using a training
dataset, which is subsequently evaluated by cross-validation
protocols. In our case, a leave-one-out cross-validation protocol
(i.e., the jackknife method) was conducted to evaluate the
level of correct classification of the observations within the
clusters (Anzenbacher et al., 2010). In this assay, 20 repetitions
were conducted to confirm reproducibility. We succeeded in
discriminating eight clusters (control and seven saccharides,
with a total of 160 data points) with a classification success
rate of 100% (Figure 5). Interestingly, the position of the
Fru cluster is far from the control cluster, most probably
owing to the fact that Fru induced the strongest colorimetric
response among the tested saccharides. Thus, we can conclude
that the LDA plots reflect appropriately the colorimetric
responses of the tested saccharides. According to the result of

ANOVA (Supplementary Figure 15), the contribution of BPR
for discrimination is much higher than the other three dyes. It
seems that the relatively high contribution of BPR caused the high
F1 value. However, the contribution of the other three dyes is not
ignorable. In the absence of ARS, PR or PV, we could not achieve
100% correct classification. Therefore, LDA using four dyes with
3-NPBA is required to discriminate target saccharides.

Although Musto et al., previously reported a qualitative
discrimination of saccharides with the use of a colorimetric
assay (Musto et al., 2009), quantitative assays for saccharides
have not been fully investigated. We thus attempted to apply a
semi quantitative assay for Fru and Glc. Beverages, such as fruit
juices and wines, generally contain saccharides at concentrations
in the range of several tens to hundreds of mM (Han et al.,
2016). The LDA was also conducted as the pattern recognition
in the semi quantitative assay. This means that the LDA score
plots for concentrations in the range of several tens of mM of
Fru and Glc were clearly discriminated with classification success
rates of 100% (Figure 6). The notable point of the assay is that
these cluster positions possess significant trends depending on
the saccharide concentrations, which is in agreement with the
results of the UV-vis spectroscopic titrations.

From the viewpoint of practical sensing applications, a
regression assay for complexed media is necessary. Finally, we
demonstrated a quantitative assay for a mixture of Fru and Glc.

In this assay, various mixture samples containing eight different
concentrations of each saccharide were prepared and were

injected in the colorimetric sensor chip. The concentration of
Fru was adjusted to gradually decrease, while the concentration

of Glc was gradually increased relative to Fru. Owing to the
complicated optical responses of the chemosensor array,

we employed a support vector machine algorithm (SVM)
(Hamel, 2009). The SVM is a powerful analytical method

for a quantitative assay, such as the simultaneous prediction
of species and concentrations. This method enables the

creation of a linear regression line even though an original
inset dataset does not show a linear correlation (e.g., analysis

of mixed components). The measured UV-vis spectra of
chemosensors were analyzed by the SVM, and then unknown
concentrations of saccharides in the mixtures were predicted
(Supplementary Figure 20). The predicted concentrations
(circle dots in Supplementary Figure 20) closely exist on the
calibration regression linear line. This indicates that we predicted
successfully the saccharide concentrations in the mixtures. The
relatively low values of the root-mean-square errors (RMSEs)
also indicate the high accuracy of the model and its predictive
capacity. To the best of our knowledge, this is the first example
that accomplishes colorimetric regression analyses of saccharides
in mixtures using only a simple and an appropriate combination
of commercially available reagents.

CONCLUSION

In summary, we demonstrated the qualitative and quantitative
detection of monosaccharides with a simple colorimetric
chemosensor array. Owing to the reduced complexity of
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TABLE 1 | Binding constants (KG M−1)a on the basis of the indicator displacement assay.

Dye Fru Gal Glc Xyl Man NAcGlc Rha

ARS 560 ± 71 110 ± 11 52 ± 4 41 ± 6 <10 <10 17 ± 2

BPR 1900 ± 39 230 ± 24 150 ± 6 110 ± 5 110 ± 13 <10 46 ± 4

PR 380 ± 38 <10 <10 <10 <10 <10 <10

PV 410 ± 49 33 ± 6 16 ± 1 12 ± 2 <10 <10 <10

aBinding constants were calculated using the change in the UV-vis absorption upon the addition of the analyte in a phosphate buffer solution (100mM) at a pH of 7.4 at 25◦C. All the

errors of the binding constants are <19%. Five repetitions were measured for each analyte.

FIGURE 6 | LDA plots for the semi-quantitative assay for (A) Fru and (B) Glc at the concentration range of 0-100mM. Twenty repetitions were measured for each

concentration.

conventional complicated synthetic methods, the molecular self-
assembled system was employed to prepare chemosensors in situ.
Accordingly, the chemosensor array was fabricated by mixing
low-cost, commercially available reagents, such as 3-NPBA, and
four types of catechol dyes. The various combinations of these
compounds with saccharides generated multi-color response
patterns based on the IDA. In the case of the qualitative
assay based on the LDA, we succeeded in discriminating of
eight distinct groups (control and seven types of saccharides)
with a classification success rate of 100%. Furthermore, semi
quantitative and quantitative assays for Fru and Glc were
conducted and resulted in highly accurate discrimination and
prediction. We believe that the simple methods proposed here
can be readily conducted by specialists and non-specialists of
supramolecular and analytical chemistry, and could contribute to
the increase in popularity of chemosensors.

AUTHOR CONTRIBUTIONS

YS performed the spectroscopic and the high-throughput array
experiments and wrote the manuscript. ZZ performed the

spectroscopic experiments and calculated the binding constants.
SVMwas also performed by ZZ. TM conceived the entire project.

FUNDING

YS and TM thank the financial support from the Japan Society
for the Promotion of Science (JSPS, Grant-in-Aid for Scientific
Research, Nos. 18J21190 and 17H04882).

ACKNOWLEDGMENTS

We thank Prof. H. Houjou and I. Yoshikawa of The University
of Tokyo for their technical support regarding the FAB–
mass spectrometry.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fchem.
2019.00049/full#supplementary-material

REFERENCES
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